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Outline

* The electrical behavior of the bulk liquid

« Metal — liquid interface: double-layer capacitance
* Potential drop across the electrode-liquid interface
* Charge transfer at the interface

» Current-Voltage relation

* Mass transfer

« Response to a potential step (amperometry)

« Response to a potential sweep (voltammetry)

« Small signal equivalent circuit (impedance spectroscopy)
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An Interfacial Process

For: O + ne- < R 5 separate events must occur:
O must be successfully transported from bulk solution (mass transport)

O must adsorb transiently onto electrode surface (non-faradaic); Chemical
reactions preceding or following the electron transfer (e.g., protonation or
dimerization or catalytic decomposition) on the electrode surface.

= CT must occur between electrode and O (faradaic)
= R must desorb from electrode surface (non-faradaic)
= R must be transported away (mass transport

Electrode surface region Bulk solution
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Standard electrochemical setup

For practical reasons the distance between the electrodes is ~ cm

Silicon: (um, nm)
n= 1000 cm?4/Vs
D = 20 cm?/s




Time to pass through the cell

L Example: K*
1V u= 7.6 104 cm?/s, D=2 10° cm?/s

N Particles move slowly,

K ®- a non-stationary condition

‘ 5 IS common!

Diffusion limited: (space = +2Dt)

L=1cm: - transit time = 7h !l

L=10um: - transit time = 25ms [Silicon: = 25ns]
Drift limited:

1V applied - electric field =~ 1V/L - velocity = u 1V /L

L=1cm: - transit time = 20 min !!!

L=10pum: - transit time = 1ms [Silicon: = 1ns]
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The importance of the mass transfer

Vext N

+ Assuming:
" « current controlled by the reaction at
curren the left planar electrode (area A)
Vi< -ro0rc @0

%
. = .« V-V, =+100mV

e

Cgr = 1TmM, C5=0 uniform at t=0s
= = =5.10"% cm?2
/ L=1cm Ko = 1cm/s, a=0.5, uyg=5-10* cm4/Vs
, (1-)q(Ver—Vo) . ~ A agN..C Vsot
lelectrode = A qNA,, CR koe kT LR,solution = 4 qINgpLr U L

_ _ (1-a)q(Ve—Vo) Vsor V... should be
lelectrode = lR,solution » koe kT —H 20 » SzOl1 38kV!!!

Arrival rate of species R is lower than the kinetics at the electrode
— Cg at the surface will decrease



Current: Mass-Transfer Effects

I
I
I

Pure electron transfer NG

I | Mass-transport control

Il m—

Cr(0) decreases

' @
Go(0) decreases .
Mass-transport control < ‘ e‘
=&

Butler-Volmer:

| = gNy Aky | Ca(0)e @9V )T _ o gyoaa(v-v®')/kT|
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Mass transfer mechanism

1 Diffusion e '.'.r
2 -_— — -0-.-. [ ]
n - . . / - _.-0 e [ ]
= Diffusion: concentration gradient oo et
g -_‘—-._....-:::. ..-... ..
b — .
. . . . l=| Migration -@
= Drift: electric field + charged particle 1o —@@_ e-
. . 4 o
/ -®
(migration) 4 o o
i -
= Convection W N Py
* Natural s e
° Mechanlcal Wang, Analytical Electrochemistry

What is the most important factor?

The natural convection is negligible near the interface
(stagnant layer)
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Dominant mass transfer mechanism

Diffusion or drift?

For simplicity (interpretation, experimental setup) or
for necessity, the mass transfer of the electroactive

species is very often controlled by diffusion

Vext/\
+\__/

current

Necessity: example 1

Neutral redox species, no drift!
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Dominant mass transfer mechanism

Diffusion or drift?

For simplicity (interpretation, experimental setup) or
for necessity, the mass transfer of the electroactive

species is very often controlled by diffusion

Vext N
+\__/

current

Necessity: example 1

Neutral redox species, no drift!

or
“‘wrong” charge of redox species!
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Mass transfer mechanism

Diffusion or drift?

For simplicity (interpretation, experimental setup) or
for necessity, the mass transfer of the electroactive
species is very often controlled by diffusion

V.. Example 2
+© Common condition in biosensing
and analytical chemistry:
current

Electrolyte + redox species

Target: redox species
Electrolyte: PBS, ion-rich solvent

Claim: we are limited by diffusion
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What are we measuring?

1 ml of PBS contains: Yert

3-10%2 water molecules current

= 1020 Na*, Cl-ions
= 1018 K* ions
6-10"3 H* ions (pH=7)

...and maybe the target is ...

1uM= 6 10'* redox species 108 specific antibodies
1nM=6 10" redox species 1(1)6FDNdAP39_CIU€_nCe; N

<
1pM=6 108 redox species ood Foisoning Fathogens

(Salmonella, E. coli,...)

(assuming charge transfer is related to the target concentration)
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Example

Electrolyte: KCI, Cx;=1M

Redox species: K;[Fe(CN) gl , Cgecny=1mM
Hrecny = 107 cm?/Vs

Electrodes: Ag/AgCl and gold

Reactions: gold electrode: |[Fe(CN)s]*+e s [Fe(CN)gJ*

AgCl electrode: AgCl +e s Ag + CI-
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Balance sheet - supporting electrolyte

|
?;_(h lons in solution: K*, CI-, [Fe(CN)g]*
C N 10 > Crecny=0-001C¢,.  pxa=pc = 0.7 tpgen
10-e €

Let us assume a current of 10-e/s
Ag/AgCl | :Au
electric field E

10e
AgCl+e €Ag,+Cl, 10CF 10 [Fe(CN)ql*: [Fe(CN)sJP+e>[Fe(CN) ]+
4.99K*
4.99CI-
0.02 [Fe(CN)gJ*

10 charges per second everywhere

IK + ICl + IFe(CN)6 =10 e/S
qNavCK.uKE + qNavCCl/iClE + 3qNavCFe(CN)6.uFe(CN)6E =10 e/S




Balance sheet - supporting electrolyte

|
?;_(h_ lons in solution: K*, CI-, [Fe(CN)g]*
C N 10 > Crecny=0-001C¢,.  pxa=pc = 0.7 tpgen
10-e €

Let us assume a current of 10-e/s
Ag/AgCl | :Au

+ electric field E -
10 e 10 e
AgCl+e €Ag(+Clyg LTOCT 10 [Fe(CN)sI”| [Fe(CN)qJ>-+e>[Fe(CN)4J*
4 99K*
4.99ClI

0.02 [Fe(CN)g]*>

10 charges per second everywhere

The drift alone CANNOT sustain the charge transport
The electrolyte ions shield the redox species = limited effect of E




Balance sheet - supporting electrolyte
V

N Crecn)=0.001C¢.  m=pc = 0.7 preeny
Go.e 10-€

Let us assume a current of 10-e/s
Ag/AgCl | :Au

{ . . . W+ _ 3-
?I)-(/\- lons in solution: K*, CI-, [Fe(CN)g]

+ electric field E -
10 e 10 e
AgCl+e €Ag(+Clyg LTOCT 10 [Fe(CN)SI”| [Fe(CN)qJ>-+e>[Fe(CN)4J*
=5K*
=5CI-
10 charges per second
everywhere

1
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Balance sheet - supporting electrolyte

|
e_>|>_<h_ lons in solution: K*, CI-, [Fe(CN)g]*
N Crecny=0-001Cc.  pxs=nci = 0.7 preeny
Go.e 10-e

Let us assume a current of 10-e/s
Ag/AgCl | :Au

+ electric field E -

10 e 10 e

10 [Fe(CN)J>

~HK*
=5ClI-

AgClre €Ag)*+Cly, [Fe(CN)g]*+e>[Fe(CN)gl*

Current limited
by diffusion of
[Fe(CN)¢]* at this
interface

~5K*
~5Cl:
+10[Fe]*
+10[Fe]*

diffusion diffusion




Response to a potential step

Considerr O+e S R Electrode

Assume: voltage V O
Co=0,Cr=Cg" fort<0 e <
V(t<0)<<V?; V(t>0) >>V? i.e. negligible reduction

Nernstian reaction: C,(x=0), Cg(x=0) determined by Nernst eq.

current ?

time time
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Response to a potential step

Consider: O+e 5 R Electrode

Assume: voltage V O
Co=0,Cr=Cg" fort<0 e <
V(t<0)<<V0:  V(t>0)>>VO i.e. negligible reduction R

Nernstian reaction: C,(x=0), Cg(x=0) determined by Nernst eq.

current ?

time

t<0 ¢0 , A 7 \ 0 ( ¢AO / \
| = qN. Ak, [CR (O)e(l—a)q(V—VO )/kT _ C, (O)e—aq(V—Vo )/kT]
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Response to a potential step

Consider: O+e 5 R Electrode

Assume: voltage V O
Co=0,Cr=Cg" fort<0 e <
V(t<0)<<V0:  V(t>0)>>VO i.e. negligible reduction R

Nernstian reaction: C,(x=0), Cg(x=0) determined by Nernst eq.

current ?

time time
t=0 Cr bulk >0 0 =0

| = qN. Ak, [CR (O)e(l—a)q(V—Vol)/kT —c, (O)e—aq(V—Vo )/kT]
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Potential step: concentration profile
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Cottrell equation

reaction (current flow) causes
a depletion (thickness 6) of R

Cr
' with tim
o 5(ty) 5(t2) that Increases ime
J _ -+ Current limited by diffusion:
R
. dCp
i(t) =nFADg M
C: — Cp(x = 0)
L 5 by ) ; — R R
g = lg Pl i(t) =nFADy 50
» i(t) ~ nFADp —
0 = (t) e
t 5(t) F=qN,,~Faraday constant
Depletion of R = total charge: f i dt ~ nFAC} —-
0
. L : ,1dé(¢)
Differentianting: () anACRET —
Dr
ds(t) 2Dy B i(t) =nFA |—Cp

7 500 = 6(t) = 2/Dgpt \ 4t

Cottrell equation



Limit current

| Electrode

depletion layer increases
1 with the time Stagnant solution
Ve

Diffusion layer

Iy |
M — Bulk solution
- = .. . _ 5 Natural convection

time
The final current is not zero in real experiments
why?

- geometrical effects (see lesson on nanoelectrochemistry)
- natural convection limits the layer thickness at about 5,=100-500pum (not
well controlled! mechanical vibrations, temperature gradient,...)
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Current — planar electrode

y

time
Limiting current: = nFAD, —= meas. of Cg
Mitng ‘L= ARR s » (amperometry)

Slow response to a step voltage (better work with a constant voltage)
2

assuming D=2-10 cm?/s, §,=500um ~ B) &, ~ ;- =31s
R
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Double Layer vs. Diffusion

metal double layer bulk solution
@ o

+
+
Im
+
+

+
+®e%0 ® o _ ®o ®_
+ @

‘AV Tege, 00 o ®s®

o 0® 0 ©

" time Teo. © O O O
+ @ O“ e O O
+. “ ) O
+ ® ®

The double layer requires charge, not necessarily redox species!
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Double layer charging

B —
| time
Ve
\_/

charging of C, through the ions
of the supporting electrolyte

Q (drift)

| IR !

: |_—|ﬁ/\/\/\_||_| B “fast” exponential transient
Vinterfaces i charging

2t
V(o) — AV e Rsol'Cai

AV

time
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Step response of a planar electrode

i(t) Charging of the double-layer

exp( t/D

electrode kinetics

i, = 121nA4
—_ i —
: | time
~100us =30s
R o depletion
C:TI diffusion thickness limit

Assuming:

AV=0.5V

Cr™=100uM

D=2:10"° cm?/s, 8,=500um
Ppes = 60 Q-cm

Cy4'= 0.1pF/um?

r=1mm (disk electrode)

J
R, = p/4r = 150Q
Cy= 314nF
J
Rsol Cq =47ps
t, ~ ﬁfR =315
i(0) ~ = 3mA
Rso1
i = nFADR = 121nA
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Response to a potential sweep

Considerr O+e 5 R Electrode

Assume: Voltage V O
Co=0,Cgr=Cg" fort<0 e <
V(t<0)<<VO R

Nernstian reaction: C5(x=0), Cg(x=0) determined by Nernst eq.

I
\V | I
I
|
|
I

current ?/

time time

| = qN. Ak, [CR (O)e(l—a)q(V—Vol)/kT —c, (O)e—aq(V—VO')/kT]
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Concentration profile

* . =0
Electron f" 2
transfer { £
limited i / £
@)
3 ' 3
i‘ﬁ_ L]
S . 5
o / -time oc potential ©
=] @)
g =
z >
B i,
s A g
Diffusion ‘y/ 1)
. . X
limited 3
m

Distance From Electrode >
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Slow sweep: Stationary Current Profile

=
o
8
E Kinetic-
= controlled diffusion-controlled
Exponential rise e
with potential /-~ slow sweep or small electrodes

(see nanoelectrochemistry lesson)

Bockris, Reddy - Modern Electrochemistry

A . — >
\ Potential « time
C,4 charging: i=C,, - dV/dt = constant
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Fast sweep: Peaked Current Profile

Diffusion effect
( begins to dominate

Peak current o« C’

Beginning of noticeable
effect of diffusion as

i, falls with time diffusion-controlled

z Potantial of the

s o eak\elated to V,

E Kinetic- Rate controlled
s controlled angeny by ‘LJ{

Exponential nse
with potential

e,

Peak shape related to the
| speed of the electron transfer
| (cyclic voltammetry, see

' Carminati’s lesson)

A :
\ Potential K time
C,4 charging: i=C,, - dV/dt = constant

G. Ferrari - Electrical measurements in liquids
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What about impedance spectra?

From the previous lesson WITHOUT mass transfer

H0FC e |Cs
| ] //CPE
charge B \ oL

o° -transfer w

_\ (R Double-layer s V-
= (CPE) Ret
N
104 . il
; R solution |
C. |
103 Ll Ll Ll Ll Ll Lol Lol L
10" 10° 10° 10 10° 10° 10’ 108
Frequency [Hz]
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Equivalent Circuit: Charge Transfer

Electrode kinetics gives a non-linear behavior A4

The impedance concept requires a linear system} Small signal
linearization

working point

[ = iO (e_anQ(V_Veq)/kT _ e_(l—a)nq(V—Veq)/kT)
io = QN4 AkoC5~*CE

A stationary condition is more »
easily obtained with V=V,

P kT 1
e ng iy
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Warburg Impedance

Near equilibrium (C#0)
CR,A
CO <):I
R diffusion
O diffusion
@y =
- distan'ce

Redox process

“high frequency”:
Few molecules are required at the interface
—> kinetic-limited current
2> Ry

V(t)

>

i(t)"/\

i

time

Number of molecules
required by the redox

i

L

time
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Warburg Impedance

Near equilibrium (C#0) V(t)
CO,A
Cr [ —
O diffusion >
time
: R:Sdiﬁ“SiO” Number of molecules
@% ‘ required by the redox
distance P(tV
Redox process i(t) /\ /\
“high frequency”: /\ /\ S
Few molecules are required at the interface ' time
—> kinetic-limited current
> Rct \/ \/
it
“low frequency”: /\
Many more molecules are required S
- diffusion-limited current time
—> higher impedance: Z,,

I f \L 9 ZW T easuiements in liquids




Warburg Impedance

c* =0

1

1

time Omax = 900um (convection in
an undisturbed solution)

.

fin= 1/30s= 10mHz

Concetration of Oxidized S pecies

Dsstance From Electrode »

_ 0 . 0 _ _RT 1 1
w=m T EA*\/'(D & ' DiC )
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ZWarbur— Bode plot and Cole-Cole plot

Zyy = o j Cole-Cole plot:
vV VW
: S 10210 | |
10°F * o w—0 /
8_ / -
Planar electrode
- ldeal
108 - capacitor S
S| ™2
=, 1 =
N /7 N
£
10"t Warburg
impedance
Idealresistor
10160'2 T 10" 8 170
Frequency [Hz] Re {Z,, } [{] <10
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Zwoura— geometrical effects

Planar electrode

~2 /
NT ®
£
! ®
®
0

Re{Zy}

Fig 3.4 Calculated impedance for various shapes of a single pore (from [15])

Kaiser et al., Electrochim. Acta 21, 539 (1976)
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The Randles Equivalent

| | | | CPE
Diffusion (Z,y) <<
6 oL
10 :~ 1/ /o wﬂ
Charge s V- Z
E}I 10° transfer Ret W
— (Re) 1, Double-layer ;
N 10% @™\ (CPE)
: R solution |
10+ E
| Cs
N f
10 * * [ [ *
10 10° 10° 10" 10° 10°

Frequency [HZ]



Summary

« Bulk solution conductivity depends on the concentration of ions
* Physiological solution is a good conductor up to *x350MHz

« Metal-liquid interface: charge redistribution, double-layer
capacitance:
 Large value (0.1-0.4pF/um?in PBS)
« High sensitivity to the surface and the first few nm of liquid (in PBS)

 Electron transfer at the interface is possible:
« Exponential current-voltage characteristic controlled by V-V° and conc.
 Easily limited by the mass transfer
« Equilibrium does not mean external voltage = 0V

 For high ionic concentration (supporting electrolyte; PBS)
« Mass transfer of redox species is limited by diffusion

» Potential step and potential sweep to study redox processes
* Non-stationary condition is usual (macroelectrodes)

* Impedance described by the Randles equivalent model
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